
A Third-Party Report, Prepared & Written
by Premier Cloud Native System Integrator

Azure + C3.ai
Application Development
Time and Cost Savings

1© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Note from C3.ai

C3.ai commissioned a third-party system integrator – with extensive experience in
developing enterprise applications on the Azure cloud for Fortune 1000 customers –
to develop a Predictive Analytics application for a network of devices, to run on the
Azure cloud. The system integrator was given a Product Specification and asked
to develop the same application using two approaches:

1. Build the application using only Azure native services;

2. Build the application using the C3 AI Suite in combination with Azure services.

The following report was written by the third-party system integrator to describe their
process in developing the application, including a detailed account of developer time,
effort, and coding required using each approach.

Readers can download the following document as a separate PDF file:

• Product Specification: Predictive Maintenance Application for a Network of Devices

https://c3.ai/wp-content/uploads/2020/04/Device-Predictive-Maintenance-Specification6.pdf

2© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Executive Summary 4

Findings 4

Background 10

The Azure Native Solution 13

Comparison Tools in Detail 14

Project Narrative 17

C3.ai + Azure Solution 20

The Azure Native Solution 23

Comparative Observations 37

Project Metric Comparison 37

Developer Experience Inputs 40

‘Ilities in Detail 42

Maintainability 42

Usability 46

Affordability 48

Functionality 49

Interoperability 53

Security 56

Conclusion 57

Table of Contents
Third-Party Report

3© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Third-Party Report
by Azure Premier
System Integrator

4© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Executive Summary

Three Azure system integrator experienced
software engineers (“the team”) built a simple
predictive analytics application for AI-enabled
devices (“the Application”) on C3.ai’s platform
in combination with Azure (“C3.ai + Azure”) and
compared it to building a similar application using
only Azure native services (“Azure Native”). The
team found that building the Application on C3.ai
+ Azure accelerated development by a factor of
18 times, while reducing effort and risk through
its architectural approach. These findings have
been determined through a thorough analysis of
developer experience metrics and inputs, scoring
the two platforms based on third-party system
integrator’s ‘ilities framework, and performing a
SWOT analysis based on those scores.

Developer Experience Findings

For the C3.ai + Azure implementation, the team
evaluated two approaches: C3.ai Low-Code (i.e.,
Visual Studio Code in the C3 AI Suite) and C3.ai
No-Code (i.e., the C3.ai Integrated Development
Studio, or C3.ai IDS). Both the developer
experience metrics that were collected, as well
as the inputs from the development team, show
that C3.ai + Azure required significantly less
development time than Azure Native, and is more
pleasant to work with overall.

Findings

Our firm, a premier Azure consulting partner with Azure competencies in Big Data and Machine Learning,
was commissioned by C3.ai to conduct the Device Predictive Analytics development project described in
this document, and to prepare the following report of our findings and analysis.

5© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Total Effort (FTE Days)

AWS Native Azure Native Azure + C3.ai

120

80

40

0

140

100

60

20

Lines of Custom Code

AWS Native Azure Native Azure + C3.ai

4,000

2,000

8,000

10,000

6,000

12,000

14,000

16,000

18,000

0

118.75

3

90

16,000

3,047

14

6© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Table 2. Developer Experience Metrics for Azure Native compared to C3.ai No-Code

Metrics

90 days

3,047

3 days Reduced by 30x

Reduced by 217x14

Azure Native
Low-Code

C3.ai No-Code (IDS)
+ Azure

Effort Comparison Using
C3.ai + Azure

Total Effort (FTE Days)

Lines of Custom Code

Table 3. Developer Experience Metrics for AWS Native compared to C3.ai Low-Code

Metrics

118.75 days

16,000

5 days Reduced by 23.75x

Reduced by 19.5x822

AWS Native
Low-Code

C3.ai Low-Code
+ AWS

Effort Comparison Using
C3.ai + AWS

Total Effort (FTE Days)

Lines of Custom Code

Table 1. Developer Experience Metrics for Azure Native compared to C3.ai Low-Code

Metrics

90 days

3,047

5 days Reduced by 18x

Reduced by 3.7x822

Total Effort (FTE Days)

Lines of Custom Code

Azure Native
Low-Code

C3.ai Low-Code
+ Azure

Effort Comparison Using
C3.ai + Azure

In a previous engagement, the third-party system integrator was engaged to perform a similar comparative
analysis between C3.ai + AWS and AWS Native. Two developer experience metrics were collected:
Total Effort and Lines of Custom Code.

Below are the time and lines of code benchmarks based on the third party system integrators work for a
predictive analytics application.

7© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Developer Experience Metrics

The team collected two developer experience
metrics while building on both the C3.ai + Azure
and Azure Native platforms. The metrics were
applied both to the C3.ai + Azure Low-Code
Solution and to the C3.ai + Azure No-Code
Solution, which is also comparable to Azure Native.

C3.ai + Azure Low-Code

Using the C3.ai + Azure Low-Code solution as a
basis, the team found that C3.ai + Azure compared
favorably in both developer experience metrics.
The Low-Code solution was the solution utilized to
build the Application.

C3.ai + Azure No-Code (IDS)

The team was also asked to compare C3.ai +
Azure No-Code (IDS), to provide input on C3.ai’s
configuration-based solution. After walkthroughs
and consulting with C3.ai’s expert solution
architects, the team found that C3.ai + Azure
No-Code also provided a better experience for
predictive analytics application development
than Azure Native in both developer experience
metrics.

For detailed information regarding the metrics
used, see Comparison Tools in Detail.

1. Time – Using C3.ai + Azure, building the
Application took a single developer 1
week. Implementing the same solution
on Azure Native took three developers
6 weeks to complete. Developing on the
C3.ai Platform was 18x faster than using
Azure Native services.

2. Lines of Code – Developing the Application
on C3.ai in IDS eliminated the need for code
except for a single custom function that
consisted of 14 lines of code. Using Azure
Native, the majority of data transformation
tasks required custom code, and the team
ended up writing 3,047 lines of code.
Leveraging C3.ai + Azure decreased the
lines of code written by a factor of 217x which
contributed significantly to the reduction in
time.

‘ilities Findings

The ‘ilities Framework is a comparative analysis
tool used by the team to objectively evaluate
and compare solutions and platforms. When
building the predictive analytics application
across both C3.ai + Azure and Azure Native, the
team focused their feedback through the lens of
the ‘ilities Framework to provide a standardized
methodology for their evaluations.

The ‘ilities include the following measures:

1. Maintainability

2. Flexibility

3. Scalability

4. Affordability

5. Usability

6. Functionality

7. Interoperability

8. Security

8© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

When evaluating the C3 AI Suite across the ‘ilities
Framework, the team utilized both qualitative and
numeric metrics for the comparison. The numeric
metrics are:

1. Does Not Meet Expectations

2. Somewhat Meets Expectations

3. Meets Expectations

4. Exceeds Expectations

5. Exceptional Performance

C3.ai + Azure compared favorably with Azure
Native across almost all of the ‘ility dimensions.
The team found that C3.ai + Azure scored very
high on Maintainability, which includes Flexibility

and Scalability, and also was clearly superior to
Azure in Affordability due to reduction in TCO and
quicker time to value. Additionally, the simplicity
and ease of use of C3.ai + Azure garnered high
Usability ratings, and the Functionality of the
C3 AI Suite was viewed as close to Exceptional.
Finally, C3.ai + Azure exceeded expectations in
comparison with Azure Native when considering
integrations and visualizations in the area of
Interoperability.

C3.ai + Azure and Azure Native had similar
ratings with regard to Security, because the
protocols and underlying infrastructure are not
differentiated.

Figure 1. ‘ilities Scores for C3.ai + Azure in Comparison to Azure Native

For detailed descriptions of each ‘ility, see The ‘ilities Framework.

Maintainability

1

2

3

4

5 4.5

4.5

4.5

3

4.5

4
Affordability

Functionality

Security

Usability

Interoperability

C3.ai + Azure vs. Azure Native

9© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

SWOT Analysis

Based on the developer experience metrics and the ‘ilities Framework analysis, the team has used the
SWOT Framework to characterize C3.ai + Azure in comparison with Azure Native. The 2x2 grid below shows
how each characteristic of the C3.ai + Azure platform fits into the analysis.

Strengths (Internally Facing)

The C3.ai + Azure platform provides superior
Maintainability, Flexibility, and Scalability. Due
to its elegant architecture, developers can quickly
adjust data models and data sources to adapt to
changing use cases and requirements without
needing to touch underlying infrastructure.
Additionally, the software makes it extremely easy
to add capacity as needed to scale to any load.

Across Usability, the simplicity of the platform
provides an interface that creates an excellent
developer experience.

In the area of Functionality, the team found
that C3.ai + Azure scored very high – near to
Exceptional – compared to Azure Native. As a pure
AI platform, all the required functions are centrally
located, which creates an outstanding ease of
operations for developers.

Weaknesses (Internally Facing)

When evaluating the C3.ai + Azure platform in
comparison to Azure Native, the team did not find
any weaknesses.

Figure 2. SWOT Analysis

10© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Opportunities (Externally Facing)

Compared with Azure Native, C3.ai + Azure shines
with outstanding Affordability. The platform’s ability
to build, scale and maintain the platform much more
quickly than Azure Native will provide an exponential
improvement in Total Cost of Ownership, and is a
significant differentiator in the marketplace. The
team also found that C3.ai + Azure exceeded
expectations with regard to Interoperability, in
comparison to Azure Native. C3.ai’s model-driven
architecture creates an ease of use for integrations
and visualizations that provides developers and
clients with a differentiated experience.

Threats (Externally Facing)

When evaluating the C3.ai + Azure platform in
comparison to Azure Native, the team did not find
any threats.

Neutral (No Advantage or Disadvantage)

For Security, C3.ai + Azure leverages a Virtual
Private Cloud and various other data and network
security layers. This is similar to Azure Native’s
solution, and the team did not find any significant
differences in this area.

The C3 AI Suite is a versatile complement of
applications that are used to perform artificial
intelligence functions such as predictive analytics,
supply chain and inventory optimization, fraud
detection, and maintenance operations. The C3
AI Suite partners seamlessly with all three major
cloud service providers: Azure, AWS, and Google
Cloud Platform.

While these same functions can be developed
natively on cloud platforms such as Azure, C3.ai is
confident that its architectural approach to the C3
AI Suite applications provides a better developer
experience and packaged costs for their clients.

Why the Architecture Matters

C3.ai has built the C3 AI Suite to be an accelerator
for industries leveraging AI/ML and IoT to solve
complex problems at scale. The third-party system
integrator (the “team”) built a predictive analytics
application for AI-enabled devices using the
purpose-built C3 AI Suite platform in combination
with Azure, and found that its model-based
architecture drove significant improvements
when compared to the structured programming
approach taken on Azure alone.

Visually, the simplicity of the C3 AI Suite on
Azure (“C3.ai + Azure”) architecture, versus the
architecture of the predictive analytics application
on Azure alone (“Azure Native”), speaks for itself.

Background

11© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Predictive Analytics on Azure Native Predictive Analytics on C3.ai + Azure

Figure 3. Architectural Comparison between Azure Native and C3.ai + Azure

From an industry perspective, there are benefits and risks to C3.ai’s model-driven architectural approach,
both for IT and for the business. C3.ai has consistently found that the benefits outweigh the risks, particularly
with regard to total cost of ownership and time to value.

• Application build can be
accomplished by one developer

• Application maintenance is done
only on the application, not on its
underlying infrastructure

• Application scales enterprise-
wide, managing millions of
models through a single instance

• Developers ramp up quickly on
each application, making them
productive quickly

• Valuable new features can be
produced quickly once the core
application is built

Total Cost of Ownership
(“TCO”)

Time to ValueApproach

Model-Driven Architecture
C3.ai + Azure

Decreased Decreased

12© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

To test this belief, C3.ai engaged a premier third-party enterprise systems integrator, to build a predictive
analytics application for a network of devices (“Application”) on both the C3.ai + Azure and Azure Native
platforms. This report details and compares the developer experience of the team during these buildouts.

• Application build requires
multiple developers

• Application maintenance must
be performed both on the
application and its underlying
infrastructure, causing expensive
dependencies to accrue and
multiply

• Scales across the enterprise,
but requires management of
hundreds of AI projects to utilize
the same data

• Developers’ training and design
time for each custom application
slow productivity

• Building new features may
require a rebuild of the entire
core, slowing time to valu

Table 4. Model-Driven vs. Structured Programming Advantages

Total Cost of Ownership
(“TCO”)

Time to ValueApproach

Structured Programming
Azure

Increased Increased

13© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

The team built a predictive analytics application on
Azure that is both in accordance with Microsoft’s
reference architecture, and indicative of what
C3.ai’s customers would build for such a use case.

High-Level Architecture

The architecture utilizes out-of-the-box Azure
products to accomplish the following functions:

1. Ingest both initial seed data and streaming
data;

2. Determine alerts and predict metrics;

3. Store input data, intermediate data, and
results; and

4. Present the data for analysis.

Azure Data Factory and IoT Hub ingest seed
and real-time data. Data are persisted at various
times throughout the process into different

storage resources depending on the structure
and availability requirements of the data. Hot,
structured data are stored in Synapse, a data
warehouse solution in Azure; hot, unstructured
data are stored in Cosmos DB, a NoSQL data
store; and cold data are stored in Azure Data Lake
Storage Gen2 (hereafter referred to as “Azure
Data Lake”), a data lake solution. Databricks is
used to enhance and transform the data. After the
machine learning features are prepared, Azure ML
Studio is used to train the machine learning model
and deploy it to an endpoint so that predictions
can be generated for streaming data. Finally,
all the device data are displayed as interactive
visualizations on Power BI, Microsoft’s business
analytics dashboarding service.

The below diagram shows this high-level
architecture:

The Azure Native Solution

Figure 3. Azure Native Architecture

14© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Developer Experience Metrics and Inputs

The team tracked three metrics to measure the complexity of developer experience: amount of time to
develop the entire Application, amount of time to develop key pieces of the Application, and lines of code to
develop the Application.

To further understand and document the
complexity of developer experience on each
platform, the team captured screen shots of
configurable features and capabilities at the user
story level.

These developer experience metrics and inputs
supplied critical data points for the differentiators
C3.ai evaluated in this report.

The ‘ilities Framework

In addition to the developer experience metrics,
the team leveraged their proprietary ‘ilities
Framework to capture other, more complex
aspects of the comparison. The ‘ilities Framework
describes a solution (the Application on C3.ai +
Azure) by determining how well it compares to a
similar solution (the Application on Azure Native)
across eight factors: Functionality, Usability,
Affordability, Maintainability, Flexibility, Scalability,
Interoperability, and Security.

Comparison Tools in Detail

Table 5. Comparison Tools in Detail

Measurement Level trackedMetric Task

Amount of Time

Amount of Time

Lines of Code

Developing the entire
application with one FTE

Developing key pieces of
the Application

Any customizations where
configuration is no longer
usable and code is needed
to achieve parity

Days

Hours

Integer

Project Level

Task Level; added and
rolled up to Epic Level

Project Level

15© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Example Sub-CriteriaCriteria Description

1. Functionality

 B
us

in
es

s
 T

ec
hn

ic
al

2. Usability

4. Maintainability

6. Scalability

5. Flexibility

7. Interoperability

8. Security

3. Affordability

Solution’s ability to deliver
its required capabilities and
meet the business needs

User’s productivity when
working with the solution

Level of effort required to
keep solution running while
in production including
problem resolution and
ongoing support

Solution’s ability to support
additional users while
meeting quality of service
goals

Solution’s ability to
accommodate additional
business processes or
changes in functionality

Solution’s ability to interact
effectively with other
systems or components

Solution’s ability to prevent
unauthorized disclosure,
loss, modification or use of
its data or functionality

Solution’s overall cost
including acquisition and
on-going maintenance

• Specific features

• Reporting

• Specific
requirements

• Error
handling

• Assistance

• Learnable

• Hardware costs

• Licensing costs

• Manageable

• Operable

• Adaptable

• Configurable

• Capacity

• Throughput

• Integration
protocol

• Access Control

• Encryption

• Recoverable

• Analyzable

• Maneuverable

• Resource
utilization

• Response time

• Loosely coupled

• Tiered

• Secure design

• Auditability

• Modular

• Productive

• Implementation
costs

• Structured

• Support costs

• Training costs

• Testable

• Upgradeable

• Modifiable

• Reliability

• Legislative
compliance

• Authentication

Table 6. The ‘ilities Framework

16© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Updating the SWOT Analysis

Finally, bringing in an overall platform perspective inclusive of an industry view, the team has provided a
Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis comparing C3.ai + Azure to Azure
Native. To remain consistent and avoid duplicating work, the SWOT Analysis from the previous report on
AWS was brought in and updated.

The SWOT Analysis includes:

• Platform Strengths (Internally Facing to Users)

• Platform Weaknesses (Internally Facing to Users)

• Platform Opportunities (Externally Facing to Market)

• Platform Threats (Externally Facing to Market)

17© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Project Narrative

The team compared building a simple predictive
analytics application (the “Application”) using
native Azure services (“Azure Native”) to using
the C3 AI Suite built on Azure (“C3.ai + Azure”). In
both cases, the team sought to ingest, unify, and
federate the raw data, process it, train a machine
learning model that predicts the likelihood of
failure within the next 30 days for each device, and
build an application user interface.

The provided data sets for the Application
included:

• Device type, wattage, location, manufacturer,
and date of manufacture

• Power grid status

• Device fixture location

• Device telemetry including watts, lumens,
voltage, and temperature

• Device event history

• Device fixture data

Building a risk prediction model for each device
required that the telemetry / measurement data be
analyzed over time. For example, the Application
uses the following time-series:

• Average Lumens per Smart Device – Light
generation over time for the smart device

• Average Power per Smart Device – Power
usage over time for the smart device

• Duration On per Smart Device – The total
amount of time (in hours) that a device has
been switched on up to the interval

• Switch Count per Smart Device – The number
of times a device is switched on or off

• Power Grid Status per Building – an external
factor indicating whether the local power grid
was functional over time at a specific building

The target variable is to predict the likelihood of
device failure within the next 30 days from a given
point in time. It is left up to the development team
how to make this prediction, although the industry
best practice is to train a machine learning model
using the provided data. With this predictive model
in place, predictions must be generated as new
data are received for each device.

To make the predictions actionable, they must be
presented to end users. The user interface for the
Application consists of two screens and seven
displays reporting on the number, location, risk
score, and status of devices as seen below:

18© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

A summary of key metrics including the total
number of devices at risk, the total number of
devices, and the number of failures YTD

1.

A map showing the location of all devices,
colored green for devices with risk scores
<50% and red for risk scores >50%

3.

A histogram showing the distribution of
devices, grouped by risk score

2.

A table of device-level detail, including device
ID, risk score, type, manufacturer, and date of
install

4.

Figure 4: UI Screen 1 – Four displays showing the status and health of the entire population of devices.

19© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

A summary of key metrics including the cur-
rent risk score, status, power and
temperature of the selected device

1. A chart illustrating the selected device’s risk
score over time

2.

All elements on the screen can be filtered by multiple dimensions. Selecting an individual device from the
table presents a device detail screen, with details as seen below:

A summary of key metrics including the total
number of devices at risk, the total number of
devices, and the number of failures YTD

3.

Figure 5: UI Screen 2 – Three displays showing the health and history of an individual device (accessed by selecting a device from the table in
Screen 1)

20© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Infrastructure Configuration

The C3 AI Suite does not require any infrastructure
to be configured or maintained. Deploying a
new instance of C3.ai on Azure takes four hours.
Deploying a new tenant within an existing instance
takes approximately three minutes.

Data Model

The team began building the Application by
creating C3.ai Types to comprise a unified data
model. Types are code representations of real-
world objects that make up a business – in this
case, devices, buildings, facilities, manufacturers,
etc. Each Type contains the metadata that define

its relevant datastores (distributed file system,
relational, NoSQL) and its relationships to other
Types in the data model (e.g., one facility has ten
devices from a single manufacturer). The C3.ai
Type System allows individuals with different
functions and specializations – e.g., developers,
data scientists, and business analysts – to work
on a shared abstraction layer without having
to configure or maintain the underlying data
federation and storage models, dependencies,
or infrastructure. Building the Application’s data
model with the C3.ai Type System required six
hours and one developer.

C3.ai + Azure Solution

Developing the Application with the C3 AI Suite on Azure was uncomplicated. Learning the C3.ai Type
System and building the Application required five days of training.

Device
Light Bulb Predictive Analytics

DevicePowerSource

PowerGridStatus

DeviceMeasurement

DeviceEvent

DeviceWeather

PowerSource

Figure 6: Architecture to build predictive analytics on C3.ai + Azure.

C3 AI Suite

C

3.ai Model-Driven Architecture

C3.ai Model-Driven Architecture

C3.ai Integrated Development Studio

C
3.

ai
D

at
a

In
te

gr
at

or

Azure - Infrastructure as a Service

21© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Data Integration

Next, the team used the C3 AI Suite’s native data
integration capabilities to integrate, index, and
normalize the device data. Prior to integrating
data, a Canonical Type was defined for each of
the six data sources. The C3 AI Suite includes
native functionality to import data from any source
– while the team worked with CSV files, C3.ai
includes pre-built connectors to commonly-used
relational databases, NoSQL databases, and
distributed file systems. All fields on Canonical
Types are mapped to a data source to define
the incoming data model which de-couples the
Types used by data scientists and developers from
external changes. Integrating data required six
hours and one developer.

Time Series Metrics

The team then used C3.ai Types to generate 13
time series metrics, which fetch C3.ai Type data
to produce a normalized time series. Initially, the
team was introduced to Simple Metrics which
are useful for common time-series manipulation
requests (sum, average, min, max, etc.). Next, the
team began developing Compound Metrics,
built as extensions of Simple Metrics, to be
incorporated into application logic and serve as
features in the machine learning development
process. The team also wrote additional methods
for the SmartDevice Type which allow for more
complex calculations on the data using JavaScript
or Python. Creating the 13 metrics took eight hours
for one developer to complete.

Analytics

Next, the team used C3.ai’s native, asynchronous
processing engine to create data flow events
(DFEs). Using DFEs, the team created three
analytics that automatically generate operator
alerts when certain operating thresholds were
met/exceeded. These alerts could be routed via
email or SMS messages. Creating these three
analytics and configuring the DFEs took one
developer six hours to complete.

Machine Learning

The team created risk-of-failure scores for the
Application using Jupyter Notebooks and Python,
both supported natively by C3.ai. By having the full
functionality of the C3.ai and C3.ai Type Systems
natively integrated with Jupyter Notebooks,
data scientists are provided easy access to
leverage familiar tools and efficiently develop
solutions. A classification model was trained
that regressed the metrics SwitchCountWeek
and DurationOnInHours against the dependent
variable WillFailNextMonth to calculate the
probability of device failure in the next 30 days.
Device failure was determined by instants where
the device status and related power grid status
were “on” with a lumen reading of “0”. The system
stored the periodically generated risk scores as
another time series metric, RiskScore. Machine
learning algorithms on C3.ai operate on all existing
data, create new data that can be automatically
attached to a C3.ai Type for future processing,
automatically update training, and make
predictions on the latest available data. For the
Application, the area under the receiver operating
characteristic (ROC) curve was .990. Training the
machine learning model and the machine learning
pipeline took one developer six hours to complete.

22© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

User Interface

The team incorporated several C3.ai Types and
time series metrics in a web interface built using
custom C3.ai HTML and UI templates. These
were then used to create the dashboard of the
Application. The dashboard UI template was
one JSON file that contained the code for the
components of the dashboard such as a status
map, a filter, a histogram and a table. The UI also
included automatically updated predictive risk
scores about the likelihood of smart device failures
(incorporated using the RiskScore metric).

Finally, a few potential roles were created
that would be assigned to future users of the
Application. These roles enable administrators
to restrict user permissions for specific needs
of different user types. Building the UI and
configuring access controls took one developer
four hours to complete.Infrastructure Configuration (Data Lake Storage,

Active Directory, Resource Manager)

Create APIs and UI (API, Angular, PowerBI)

Develop Analytics (Functions, Event Grid)

Develop Time Series, Metrics, and Machine Learning
(Databricks, Functions, Cosmos DB)

Integrate Data (Data Lake Storage,
Stream Analytics, Functions)

Develop Data Model (Synapse, Cosmos DB)

Azure Build -
3 Full-time Equivalent Persons

weeks

1 2 3 4 5 6 7 8

Infrastructure Configuration

Create APIs and UI

Develop Analytics

Develop Time Series, Metrics, and Machine Learning

Integrate Data

Develop Data Model

Azure + C3.ai Build -
1 Full-time Equivalent Person

weeks

1 2 3 4 5 6 7 8

Azure + C3.ai Implementation Timeline: 1 Person-Week

Figure 7. Predictive Analytics Application on C3.ai + Azure

23© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

The architecture for the Azure Native application
made heavy use of out-of-the-box Azure-
managed services, including Azure IOT Event
Hubs for data ingestion; Azure Synapse Data
Warehouse, Cosmos DB, and Azure Data Lake
for data persistence; Azure Databricks for data
transformation; Azure ML Studio for machine
learning training and inference, as well as
Microsoft Power BI for data visualization. This
architecture stems from our collective years of
experience working with Azure services at a deep
level – our firm is a Gold-level Microsoft consulting
partner with competencies in Cloud Platform,
Application Development, Data Platform, and
Data Analytics. We have developed and deployed
hundreds of applications on Azure for hundreds of
Fortune 2000 customers.

At the onset of the project, the team agreed to
use as many out-of-the-box native features as
possible, leveraging pre-built Azure components
and only writing custom code and queries where
the built-in features were too limited to provide the
requisite functionality.

The Azure architecture used for building out the
Application is based on a reference architecture
by Microsoft, which includes Databricks on
Azure. It has been thoroughly reviewed by C3.ai
senior architects to ensure the architecture is
representative of how a C3.ai customer would
approach setting up their own predictive analytics
application.

Developer experience metrics were tracked
while developing the Application, including time
required to complete the entire project and time
required to develop each high-level component.
Where code was utilized, the team tracked the
number of lines of code as well.

The architecture diagram below displays the
overall Azure architecture and how the various
components interact to meet the Application
specification.

The Azure Native Solution

24© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Below we describe the buildout of the Azure
solution in detail, starting with the infrastructure
configuration and ending with displaying the
results using PowerBI, an Azure native visualization
tool.

Infrastructure Configuration

In order to parallelize environment setup and
minimize developer conflicts, the team divided the
infrastructure tasks into the following categories:
basic access, ingestion, storage, transformation,
machine learning, and delivery. The work began
by creating a new Azure subscription and
configuring basic access control and security
policy permissions. Once the subscription
was configured, the team was able to begin
provisioning the services in Azure needed to build
the Application.

Initially, the team created resources to support
the ingestion process for historical and streaming

data – Azure IoT Hub, Azure Stream Analytics,
and Azure Data Factory. After the team had the
services necessary to ingest data, Azure data
stores were provisioned to persist data with
different structure and availability needs – Azure
Cosmos DB (unstructured-hot), Azure Synapse
(structured-hot), and Azure Data Lake (cold).
Next, the team set up the services in Azure
needed to transform device data and perform
machine learning tasks – Azure Databricks and
Azure Machine Learning Workspace. In a newly
created subscription, Azure Databricks is limited
by the default compute quota. In order to remove
that restriction, the team opened a ticket with
Microsoft to increase the compute quota and the
issue was resolved in less than one day. Finally, the
team provisioned a Power BI instance to deploy
dashboards for end users to derive actionable
business intelligence from streaming data and risk
predictions.

Figure 8. Azure Native Architecture

25© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Deploying resources in Azure can be done via
the Azure Portal or using the Resource Manager
API. The team leveraged the no-code option
of deploying resources via the Azure Portal.
Modifying existing resource configurations is
a manual process that can also be done via
the Azure Portal with no code. Maintaining the
underlying infrastructure is handled by Azure and
requires no effort from the development team.

Leveraging the Azure Portal, the team set up the
infrastructure in 5 developer days.

Data Model

The team built the Data Model in accordance
with the Canonicals in C3.ai. To optimize the
different forms of incoming data for read and
write efficiency, time series data were loaded
into CosmosDB as JSON objects and non–time
series data were stored as tables in Synapse. The
schemas of the Synapse tables were very close
to those of the files provided by C3.ai, apart from
the column names. For example, the column
representing “Smart Device ID” has varying names
in each of the seed files (e.g., “id”, “smartDeviceId”,
“SN”). These differences in the incoming data were
normalized when loaded into the data warehouse.

Structured Data in Synapse

To create the Synapse tables, the team first
uploaded the raw CSVs into a blob container in
Azure Data Lake. A connection from Synapse
was then created, registering the blob container
as a Synapse Datastore. Next, SQL queries were
written to create an external table on each of the
seed files.

From these external tables, the team created the
working tables through SQL queries. Values from
the external tables that defaulted to string values
were converted into integer, decimal, and datetime
types where appropriate. Column names and
value formats were corrected to be consistent
across tables. Primary keys and indexes were
added to optimize table operations. While the
process of creating internal tables from external
tables could also be used for some data cleaning
operations such as omitting null values or only
taking values within a certain range, the team did
not need to build in that functionality because
the data contained no null values or other data
anomalies that required cleaning.

The team wrote approximately 300 lines of SQL
to connect to Azure Data Lake and create the
external and internal tables in Synapse. Modeling
the relational data in Synapse took a single
developer 7 days.

Unstructured Data in Cosmos DB

Configuring Cosmos DB to handle unstructured
device data primarily consisted of determining
the appropriate partitioning strategy. Cosmos
DB is a highly available, distributed data store
that works best when partitions are created to
reflect natural divisions in the data being stored.
The team decided to partition the device data by
SmartDeviceId, optimizing for the common use
case of querying measurement data pertaining to
a specific device.

Modeling our key-value data in Cosmos DB took a
single developer 3 days.

26© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Data Integration

The team defined data integration as the process
of combining data from different sources into
a single platform. Integration begins with an
ingestion process and includes any subsequent
steps necessary to model, enhance, and transform
the data. Ultimately, a successful data integration
pipeline enables the delivery component
of a solution to provide actionable business
intelligence.

The team began integration by importing seed
data into the environment. First, the provided
flat files with raw device data were uploaded
into Azure Data Lake. Next, structured data was
imported into Synapse and unstructured data into
Cosmos DB. For Synapse, the structured flat files
were referenced as external tables and used to
create internal tables that would hold metadata
about each entity (e.g., Smart Device, Fixture,
Building). For Cosmos DB, the hourly time series
data was imported through the Azure Stream
Analytics Job that was developed to handle
streaming data. Leveraging Stream Analytics
allowed the team to test the job and ensure
consistency between processing historical and
live data. All seed data are retained in Azure Data
Lake for reference, debugging, and creation of
new environments in the future.

Ingesting the seed data took the team 3 developer
days.

Streaming data enter the Azure Native
environment via Azure IoT Hub endpoints. Every
hour, a file is sent to the IoT instance with simulated
device data which is processed by the Stream
Analytics job tested on the seed data. Once

processed, the data are persisted in Cosmos DB
and Azure Data Lake.

Configuring the IoT Hub to ingest streaming data
took a single developer 2 days.

After streaming data are persisted in Azure
Data Lake, the Azure Data Factory pipeline that
orchestrates the machine learning process is
triggered. The pipeline will pass the file path
location of new data to a Jupyter Notebook
in Azure Databricks, which is responsible for
generating features and retrieving predictions.
The predictive model was developed in Azure
ML Studio and hosted on an Azure Kubernetes
Cluster.

Setting up an Azure Data Factory pipeline
to process data and connecting the Jupyter
Notebook to the predictive endpoint took a
combined effort of 20 developer days.

Time Series Metrics and Analytics

Stream Analytics

Streaming data enter Azure via IoT Hub and are
immediately passed through Stream Analytics.
The team configured simple Stream Analytics
Jobs to format the incoming data in ways that
suited downstream processes – specifically,
preparation for machine learning operations.

Creating a new job requires minimal code (~20
lines), but still took a single developer half a day to
complete. Most of the effort consisted of testing
transformations against incoming data and
ensuring stability of downstream processes.

27© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

The team attempted to do more complex
transformations of streaming measurements to
enhance the data earlier on in the pipeline and
reduce the workload of downstream processes.
For example, logic was developed to calculate
the Metric “SwitchCountPreviousWeek” using
a SQL-like windowing function. Unfortunately,
Stream Analytics could only handle minor gaps in
the data, which was not sufficient for the predictive
analytics use case. The decision was made to use
Databricks for all complex transformation logic
moving forward.

Databricks

Once the seed data was ingested into the data
stores, the team began developing the application
metrics in Databricks. Azure Databricks is an
Apache Spark based platform optimized for
big data analytics on services in the Azure
platform. Developing the metrics in Databricks
consisted of writing custom Python logic in
Jupyter Notebooks that would retrieve the
appropriate time-series input and generate the
expected time-series output. Implementing the
required analytics involved writing additional
custom Python logic that leveraged existing
metric functions to generate alerts. In order to
accelerate the development process, the team
leveraged pandas, a popular open-source tool
for data analysis and manipulation that is included
by default in a Databricks Python environment.
Pandas offers data structures and operations
for manipulating time-series data and integrates
well with the Python Spark library, pyspark,
to maximize the benefits of Spark distributed
processing capabilities.

Using pandas, a single developer was able to
implement 13 time series metrics and 3 analytics
in 6 days.

Implementing custom Python logic in Databricks
Jupyter Notebooks would be risky and difficult
to maintain in a production environment. While
Databricks does offer integrations with version
control tools, the team found it difficult to manage
when Notebooks were connected to other Azure
services. Additionally, writing complex logic in
Jupyter Notebooks is not considered best practice
and introduces a significant challenge for testing
and code quality assurance. To mitigate these
risks, the team decided to export the metric logic
into a custom Python package, pybulb, that could
be maintained in the repository.

Exporting the code, writing unit tests, and
integrating the package into the data flow took the
same developer another 10 days.

Machine Learning

Databricks

The team used Databricks for the initial machine
learning pipeline. The pipeline includes ingesting
data from an outside source, using time series
metrics to extract features for ML model
development, training and testing different ML
models, and then deploying an inference pipeline
to generate predictions from streaming data.

In Databricks, the team used a set of Python
classes and methods in a Jupyter notebook to
integrate metrics, as described above. These
were used in Databricks to generate a Pandas
dataframe with the solution’s ML features. After

28© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

exploring these data, the team found that the
number of “true” values for “WillFailNextMonth”
was less than 2% of the total number of samples.
Therefore, the oversampling method SMOTE was
utilized to balance the training data. These data
were used to train a logistic regression model and
validated with the testing data.

The team generated statistics to evaluate the
logistic regression model, such as accuracy,
precision, recall, and AUC. ML Flow, a ML Lifecycle
management platform, was utilized both to
track iterations of the ML model, save metrics
and artifacts related to each run, and to save the
model.

The team used a separate notebook for the
inference pipeline. This notebook is triggered
when new streaming data are added into Azure
Data Lake to process the streaming data. Risk
scores are generated for each streaming device
and written to Azure Data Lake. Alerts are
generated when metadata of streaming devices
meet a specific condition. For example, when a
device has a temperature of over 95 degrees, an
Overheat alert is generated. Such alerts are then
written to a table in Synapse.

In total, the team wrote approximately 500 lines
of code in Databricks to develop the machine
learning model and inference pipeline. This took
two developers a total of 6 days to complete.

Azure ML

Model Training, Testing and Deployment

Many C3.ai customers prefer to use Azure ML
over Databricks for their production ML pipelines.
To reflect this use case, the team replaced the
model training, testing, and deployment in the
initial Databricks implementation with an Azure ML
pipeline.

Compared to Databricks, Azure ML connected
seamlessly to Azure storage resources. Datasets
were easily generated from files and tables that
existed in the Synapse tables and blob storage.
Once the ML features were prepped and loaded
into Azure ML, it was very simple to train data,
score models, and evaluate results with Azure’s
click-and-drag Designer interface. Machine
learning and data manipulation processes were
represented by modules that can be easily
connected to indicate data flow.

Using the same training and testing data, the team
evaluated 6 different two-class classification
algorithms in much less time than it would have
taken to do the same in Databricks. In the Azure
solution, 250 lines of code were re-used from the
Databricks solution to generate ML Features and
100 lines were re-used to write predictions and
alerts to the backend. Approximately 50 additional
lines of code were written in Databricks to handle
Azure ML predictions.

Setting up data in Azure ML, comparing six
classification algorithms, deploying our model
as an endpoint, and writing code to access that
endpoint in Databricks took 6 developer days.

29© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Feature Engineering

The team re-used the Databricks code for feature
engineering because Azure ML’s Designer
requires near-ready ML feature data sets. The
team found the data transformation capabilities of
Designer to be a bit lacking when compared to the
wide-ranging capabilities of the ML frameworks
available on Databricks (e.g., scikit-learn,
TensorFlow, PyTorch, H2O). It handled simple
transformations, such as deleting duplicates, filling
in missing values, and joining tables very easily
with its click-and-drag interface. More complex
transformations required a SQLite Query module
or Python Script module to execute.

To mirror the metrics functionality in C3.ai, the
team used a series of classes and functions in
Databricks to generate features. When moving
to Azure ML Studio, in comparison to using
Notebooks in Databricks, it was noted that the
coding experience in the Python Script module
was not robust. There is no way to execute code in
different blocks and view output, and everything
must be defined in a single function. In addition,
the entire ML pipeline must be run to execute the
Python script module, and any errors other than
syntax errors did not have line numbers, only the
name of the exception. For data sets that require
complex transformations for feature engineering,
a more robust coding environment would be
recommended.

Figure 9. Azure ML Designer Interface: Training, testing and evaluating six classification algorithms on data oversampled for WillFailNextMonth.

30© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Figure 10. Python Editor in Azure ML Designer: Basic text editor without Intellisense, syntax correction, or debugging functionality.

User Interface

Power BI was used to implement the Application
user interface. The UI was built in Power BI
Desktop and then published to the Power BI
Service where it could be distributed. The
original plan was to leverage Power BI only to
build the data visuals needed for the UI. Those
visuals would then be embedded in an Angular
application hosted in Azure. However, Power BI
has the capabilities needed to build entire UI in a
single two-page report and so the Angular app
was removed in favor of this simpler approach.
The steps required to create the Application
UI as a Power BI report can be condensed into
four categories: Connect, Transform, Model, and
Visualize. These categories are described in detail
below.

Connect

The first step to implement the report was
to connect to data sources in Synapse and
Databricks. This was a trivial task since each of
these data sources have native data connectors
within Power BI. Synapse can be accessed as a
SQL Server database and Databricks’ underlying
data store is an Apache Spark database. The
required connection strings are available in the
Azure Portal.

31© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

There are three mechanisms available for bringing
data into Power BI: Import, Direct Query, and
Streaming. Import, as the name implies, involves
importing the full data set from the source
database into Power BI memory. Conversely,
Direct Query will create a connection to the
source database and pull data as needed based
on transformations and filters. Finally, Streaming
can be used to send live data directly to Power
BI for storage and use. Generally, streaming will
be used in parallel with Import. The initial data set
will be imported, and live data will be streamed
in using tools such as Azure Stream Analytics.
The Application report currently uses Import for
all data sourced in Azure. There is technically a
fourth mechanism known as Custom Data, which
is defined to hold raw reference data stored within
Power BI and not an external data store. This
will be discussed in more detail in the Transform
section since it is not used to connect to an
external database.

It took less than half an hour for each connection
depending on the research required to find the
appropriate connection strings. This is a no-code
solution.

Transform

Once a connection is established, data are
transformed and enhanced using Power BI’s
Power Query Editor. The Power Query Editor is
used to transform and enhance data imported
from an external database as well as create
new tables from scratch. More advanced
transformations can be defined using Power BI’s
M language, which is the scripting language that
backs the Power Query Editor.

1. The Fixture table in Synapse contains the
relationship between all Fixtures, Apartments,
and Buildings. This table was transformed into
three tables when brought into Power BI.

a. Fixture – A table containing all unique
Fixture IDs and the Apartment IDs they
belong to.

b. Apartment – A table containing all unique
Apartment IDs and the Building IDs they
belong to.

c. Building – A table containing all unique
Building IDs

2. The Smart Device table in Synapse was split
into three tables when brought into Power BI.

a. Smart Device – The raw data in the Smart
Device table

b. Manufacturer – A table containing all
unique Manufacturer IDs

c. Device Type – A table containing all
unique Device Type IDs

3. The date time column in the Smart Device
Measurements table is stored as a Unix
Timestamp in Databricks. When that table is
brought into Power BI, a custom column is
created that transforms the timestamp into a
Date Time string.

4. All tables have data type transformations
defined. Power BI tries to guess, but in certain
places string type needs to be turned into a
decimal type and decimal type needs to be
turned into a percentage type.

5. All tables and many columns were renamed
for readability within Power BI Desktop.

32© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Custom tables required by the Application Report:

1. Failure Risk Group – A custom table was
created for use in the histogram visual which
contained all the percentage groups that
would be shown. This table defined using the
Power Query Editor “Enter Data” wizard. All
rows were entered by hand.

2. Date Times – This table contains all dates and
times (at an hourly granularity) from the first
date in the Smart Device Measurements table
to the end of the year of the current date. This
table is created by invoking a custom function
written in M that takes as input a start date and
an end date.

It took roughly one day to add the required
transformations. This is a low-code solution
where the Power Query Editor automatically
generates the M code required for the defined
transformations. For all transformations, 106 lines
of code were generated.

It took less than 30 minutes to create the Failure
Risk Group table. This table was created in a
wizard and required no code. The Power Query
Editor generated 3 lines of code to define pulling
the data set in from the JSON file it lives in.
It took roughly half a day to create the Date Times
table. The M function that generates the table
contains 18 lines of code. The Power Query Editor
generated 5 lines of code to execute the function
and pull in the resulting data set.

In total, it took one developer around a day
and a half and 127 lines of code to create the
transformations required for the User Interface on
the Azure Native solution.

Model

After the transformations are finished, foreign
key relationships between the tables must be
modeled. Power BI will make its best guess at
defining these automatically, but because the data
sets in Azure are stored in two separate databases,
some relationships need to be fixed. Power BI
provides a wizard where these relationships are
visually represented. Below is an image showing
this screen and all relationships defined for the
Application. The relationships can be defined via
drag and drop or through a secondary wizard
where columns are selected.

This is a no-code solution that takes one
developer less than an hour to complete.

Below is an image showing the model wizard and
all relationships defined for the Application.

33© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Figure 11. PowerBI Model Wizard and Relationships

34© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Visualize

The final step in building out the report is adding
the visuals. Visuals displaying raw data will directly
reference imported data and can be built very
rapidly. However, visuals that need to perform
more complex analysis on imported data will use
Measures written using Power BI’s Data Analytics
Expressions (DAX) queries. DAX can also be
used to define calculated columns on existing
tables, which is needed for the histogram visual
and current value visuals. Each visual needs to be
styled to fit the spec.

Dashboard Visuals:

1. Summary

a. Three card visuals displaying summary
data.

i. Each card is backed by a Measure.

1. Devices at Risk

2. Total Devices

3. Failures (YTD)

b. One Text Box used for the title.

c. One Rectangle object and one line object
used to create borders.

2. Filters

a. Four Slicer visuals used for filtering.

i. Each Slicer directly references a
table column.

b. One Button used to clear all filters. This
is implemented by utilizing Power BI’s
bookmarking feature. A bookmark was
created that points to the report in a state
without filters applied. This bookmark
was then attached to the Clear All button.

c. One Text Box used for the title.

d. One Rectangle object and one Line
object used to create borders.

3. Risk Score Histogram

a. One Histogram visual.

i. Data comes from the Failure Risk
Group table.

1. Axis categories are created in
the table definition.

a. 0 – 10%
b. 10 – 20%
c. Etc.

2. Device Count Per Category
is defined as a calculated
column with DAX.

3. Legend labels are created in
the table definition.

ii. Styling is applied.

4. Device Map

a. One Map visual.

i. Latitude and Longitude data comes
from the Smart Device table.

ii. Tooltips in addition to Latitude and
Longitude are backed by Measures.

1. Devices at Location

2. Devices at Risk

iii. Styling is applied.

35© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

5. Devices Table

a. One Table visual.

i. All columns except for Risk Score
come from the Smart Device table.

ii. Current Risk Score is defined as a
calculated column attached to the
Smart Device Latest table.

Device Details Visuals:

1. Summary

a. Five card visuals displaying current data.

i. Each card is backed by a
Calculated Column in the Smart
Device Latest table.

1. Current Status

2. Current Lumens

3. Current Voltage

4. Current Power

5. Current Temperature

b. One KPI visual displaying risk score data

i. The KPI is backed by two Measures
and a Date Time column.

1. Risk Scores Previous 24 Hours

2. Risk Scores Previous 48
Hours

c. One Rectangle object and one Line
object used to create borders.

2. Device Measurements Chart

a. One Line Graph Visual

i. X Axis is defined by the Date Time
column in the Date table.

ii. Y Axis references data directly from
the Smart Device Measurement
table.

iii. Styling is applied.

3. Devices Table

a. One Table visual.

i. All columns come from the Smart
Device Measurement table.

ii. Styling is applied.

It took roughly 15 developer days for a single
developer to build this report. Adding the visuals is
all drag and drop. It took 70 lines of code to define
Measures and Calculated Columns using DAX.
An additional 7 developer days were required
to validate functional capabilities and research
acceptance testing options for Power BI. The
team decided not to incorporate acceptance
testing into the build because Microsoft provides
sufficient metrics for Power BI performance.

36© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Azure Implementation Timeline

The following diagram shows the timeline required to implement the Application on Azure. In comparison
to the C3.ai + Azure solution, the Azure Native solution required 3 developers for 6 weeks, instead of 1
developer for one week with C3.ai + Azure.

Figure 12. Azure Native Solution Build Timeline

Azure Solution
Development Begins

4/17/20 4/27/20 5/7/20 5/17/20

Dev Complete

Infrastructure

Data Modeling

Data Integration

Power BI/Presentation Analytics

Machine Learning

Time Series Metrics

4/7/20 5/27/20

37© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Comparative Observations

The team calculated three metrics to compare
between the C3.ai + Azure and Azure Native
predictive analytics implementations: total
amount of time (days) to develop the complete
Application, amount of time (hours) to develop
each key component of the Application, and the
lines of code necessary to customize the solution
where no-code tools were inadequate.

C3.ai + Azure Low-Code

In all metrics, the team found that C3.ai + Azure (i.e.,
the C3 AI Suite in combination with Azure) is faster

and simpler for predictive analytics application
development than Azure Native. The Azure Native
application required three highly experienced
developers for 6 weeks, whereas the C3.ai + Azure
application was completed by one developer in
5 days. The Azure Native application required
3,047 lines of custom code. Comparatively, the
C3.ai + Azure solution was written using only 822
lines of code due to the functionality provided by
C3.ai Types. Detailed component-level hour and
configuration step results are shown below.

Project Metric Comparison

After building the solution on both C3.ai + Azure and Azure Native, there were differences in both project
metrics and developer experience. Overall, the C3.ai + Azure solution saves time and effort while reducing
delivery risk over the Azure Native solution.

38© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Table 6. Developer Experience Metrics (C3.ai + Azure Low-Code)

Measured In Level Tracked
C3.ai + Azure

Low-Code
Estimated

C3.ai + Azure
Low-Code

Actuals1

Azure Native
Estimated

Azure Native
Actuals

Metric Task

Amount of Time

Amount of Time

Lines of Code

Developing the
entire application
with one FTE

Developing key
pieces of the
Application

Any
customizations
where
configuration
is no longer
usable and code
is needed to
achieve parity

Days

Hours

Integer

Project Level 3 Days 5 Days 180 Days 90 Days

Task Level; added
and rolled up to
Epic Level

N/A Design Time
0 Hours

Build Data Lake
and Ingest Data
0 Hours

Model and
Enhance Data2
7 Hours

Transform Data3
18 Hours

Deliver Data
0 Hours

Analyze and
Visualize Data4
3 Hours

Design Time
80 Hours

Build Data Lake
and Ingest Data
40 Hours

Model and
Enhance Data
80 Hours

Transform Data
60 Hours

Deliver Data
100 Hours

Analyze and
Visualize Data
120 Hours

Design Time
52 Hours

Build Data Lake
and Ingest Data
19 Hours

Model and
Enhance Data
46 Hours

Transform Data
179.5 Hours

Deliver Data
Not Needed

Analyze and
Visualize Data
110.5 Hours

Project Level N/A 822 N/A 3,047

1Based on C3.ai Academy’s Fundamentals training timeline
2Console & Type Systems
3Data Integration, Methods, Timeseries, Metrics, Data Science Fundamentals, Analytics & DFEs, Jobs, and Queues
4UI Framework

39© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

C3.ai + Azure No-Code (IDS)

We also compared our Azure Native’s metric results against C3.ai + Azure No-Code (i.e., the C3.ai Integrated
Development Studio in combination with Azure) reference build metrics provided by C3.ai’s solution
architects, and confirmed that the tracked metrics show favorably towards the C3.ai + Azure No-Code
solution, both in less time spent developing, and lower lines of custom code needed.

Metrics from C3.ai + AWS Application Comparative Analysis

We also extracted comparable metric results from the previous efforts to build the Application using AWS
Native tools.

Table 7. Developer Experience Metrics (C3.ai + Azure No-Code)

Measured In Level Tracked C3.ai + Azure
No-Code (IDS)

Azure
Native Actuals

Metric Task

Amount of Time

Lines of Code

Developing the entire
application with one
FTE

Any customizations
where configuration
is no longer usable,
and code is needed
to achieve parity

Days

Integer

Project Level

Project Level

3 Days

14

90 Days

3,047

Table 8. Developer Experience Metrics from Previous C3.ai + AWS Application Comparative Analysis

Measured In Level Tracked C3.ai + AWS
Low-Code

AWS
Native Actuals1

Metric Task

Amount of Time

Lines of Code

Developing the entire
application with one
FTE

Any customizations
where configuration
is no longer usable,
and code is needed
to achieve parity

Days

Integer

Project Level

Project Level

5 Days

822

118.75 Days

16,000

1Metrics sourced from C3.ai + AWS Application Comparative Analysis document

40© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Developers found that having all the capabilities
related to data ingestion, pipeline development,
machine learning, and visualization in one place
was extremely helpful when developing in C3.ai +
Azure. In comparison, Azure Native is a general-
purpose computing platform and developers
must pick the appropriate technologies out of
an enormous lineup of services. Additionally,
the purpose-built C3.ai Type system and
configuration-based system means that once a
developer is sufficiently trained and working on
an appropriate problem space, the higher level of

abstraction than Azure Native’s offerings mean
increased productivity and fewer low-level details
to understand, build, and maintain.

However, developers utilizing C3 AI Suite’s Type
System miss the richness of developer tooling
that has sprung up for mainstream programming
languages and cloud-based configuration
languages like ARM templates.

The team captured visuals that showed the work
they did on the Application in each platform.

Developer Experience Inputs

C3.ai + Azure – 5 Full-Time Equivalent (FTE) Days

Figure 13. Developer Inputs from C3.ai + Azure

41© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Azure Native – 90 FTE Days

Figure 14. Developer Inputs from the Azure Native Build

42© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

‘Ilities in Detail

The team used a framework with six dimensions, called ‘ilities, to compare development of the Application
on C3.ai + Azure to development on Azure Native. Each ‘ility presented below describes the definition of
the ‘ility, shows the factors that make up the ‘ility, and assigns a numerical score to each factor following the
below scale:

1. Does Not Meet Expectations

2. Somewhat Meets Expectations

3. Meets Expectations

4. Exceeds Expectations

5. Exceptional Performance

Additionally, each ‘ility includes detailed findings with additional observations. The six ‘ilities shown below
are functionality, maintainability, usability, affordability, interoperability, and security.

In engineering, maintainability is the ease with
which a product can be maintained to correct
defects and their cause, repair and replace
components, and prevent unexpected working
conditions. Industrial predictive analytics
applications on the scale of those on C3.ai + Azure
are very complex. Compute happens across a vast
and varied set of infrastructure, tools, platforms,
and languages. Additional complexity is added
as the solution must evolve to satisfy changing
business requirements. Infrastructure services

should be interchangeable and should scale to
accommodate changing workloads. The ability
to avoid downtime and correct defects is a key
differentiator.

Factors and Scores

To evaluate Maintainability in comparison
with Azure Native, the team reviewed C3.ai +
Azure across four factors: Pipeline Stability,
Manageability, Flexibility, and Scalability.

Maintainability

43© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Pipeline Stability: 4 – Exceeds Expectations

The data types are very well-defined in C3.ai +
Azure, which means that changing a data format
requires only one change to the Ingest step, rather
than needing to change the format throughout the
pipeline, as required when building in Azure Native.
As a result, this architectural design provides a
significant advantage over Azure Native.

Manageability: 4 – Exceeds Expectations

In C3.ai + Azure, all code is version-controlled,
making it simple for developers to manage
changes, recover earlier versions, and analyze
code in smaller chunks. By contrast, in Azure
Native, extra effort is required, adding complexity
to all three actions.

In addition, C3.ai + Azure provides a layer of
protection for production applications beyond
Azure Native in situations where recovery
operations are necessary. Teams can easily
manage or upgrade underlying services, even
if that means swapping out for a comparable
service, when unexpected events pose a serious
threat to the operability of a critical application.

Flexibility: 5 – Exceptional Performance

Based on the program’s ability to handle different
use cases, data models and inputs as needed,
and its abstraction layer which allows developers
to quickly adjust lower-level details, C3.ai + Azure
is exceptionally flexible in comparison to Azure
Native.

Scalability: 5 – Exceptional Performance

Although all Cloud Service Providers (“CSPs”)
allow developers to add capacity, the C3 AI Suite

adds a layer of abstraction so that developers
do not need to interact directly with the hosting
platform infrastructure when more capacity is
needed. Additionally, the ease with which data can
be moved across data stores allows developers
to scale through differing data storage solutions
depending on solution fit for the use case.

Detailed Findings

Infrastructure Flexibility

As AI solutions become increasingly ubiquitous,
development teams will often be deploying
applications that comprise a critical part of
business operations. The model-driven approach
used to develop on C3.ai, including the modeling
of infrastructure components, decouples
custom code from the underlying architecture,
which decreases the risk and impact caused by
unexpected events.

On C3.ai + Azure, making infrastructure changes
is a simple developer task because of the
abstraction layer the C3.ai Type System provides.
Developers can modify existing resources and
change the underlying infrastructure with minimal
effort. Making infrastructure changes on Azure
Native is also trivial when modifying existing
resources; however, changing the underlying
infrastructure (e.g., swapping PostgreSQL
for Azure SQL) on Azure Native will require
careful management of potential impacts to the
environment. Any integration points with the
changing infrastructure will have to be updated,
and refactoring existing code will likely be
necessary.

44© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

For example, if a solution architecture included
Cosmos DB and Microsoft released a critical
update that required code changes, then the
development team would have to upgrade their
Cosmos DB instance and implement a fix. If the
team built their solution on C3.ai + Azure, then a
comparable data store could be used to replace
Cosmos DB, or the corresponding model could
be updated to leverage the latest changes. On
Azure Native, the team would have to scramble to
upgrade Cosmos DB and make necessary code
changes, a risky undertaking that could lead to
extended downtime and negatively impact key
business processes.

Infrastructure Scalability

Leveraging the C3.ai Type System, developers can
quickly provision environments capable of scaling
without investing time in selecting and configuring
the appropriate services. Azure Native requires
customers to choose between a multitude of
services and configure chosen resources properly.
If configured correctly, Azure Native provides
a platform for creating solutions that scale
automatically and allows customers to minimize
costs by leveraging the “pay-for-what-you-use”
benefits of the cloud. Like the Azure Native
experience, if specific resources are necessary
for a particular use case, C3.ai + Azure also
allows customers to be selective. Furthermore,
the C3.ai Platform will automatically scale the
entire data pipeline based on user settings and
live throughput requirements. Users are able to
manually intervene if needed to create additional
resources.

ML Model and Pipeline Management

ML Pipeline and Deployment

C3.ai + Azure has a durability advantage over
Azure Native because the training, deployment,
and prediction processes exist in a single, closed-
loop system, thus minimizing the risks of a single
point of failure causing disruptions to business-
critical functions.

For example, in the Azure Native solution, once
the machine learning model has been trained in
Azure ML, a real-time inference pipeline can be
generated from the training pipeline and deployed
to a REST API for consumption. A Databricks
job is triggered when new streaming data has
been ingested to generate predictions using
this endpoint and write them to storage. In C3.ai
+ Azure, trained models can be written to an
inference-pipeline, which generates predictions
once incoming data are processed by C3.ai Data
Flow Events and Analytics. Those predictions are
then written directly to a C3.ai Type object. As a
result, the C3.ai + Azure pipeline does not need to
process data across services by using triggers,
authentication, and endpoints.

ML Model

In C3.ai + Azure, developers can create and handle
new use cases with very little overhead when
compared to Azure Native.

If a model needs to update to include new features
or train with a different algorithm, C3.ai + Azure
can handle this easily by training the updated
model and overwriting the current model in the
inference pipeline. To do the same in Azure Native
requires updates across multiple services, such

45© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

as the data transformation notebook in Azure
Databricks and changes to models and pipelines
in Azure ML Studio, causing a significant increase
in development effort and a decrease in time to
value.

Data Model Management

Updating Data Models

When changing data models to handle new
use cases, data models in C3.ai + Azure have an
advantage over those in Azure Native, for two
reasons:

1. One-Step Updates. In C3.ai + Azure,
data models are represented as C3.ai
Canonical Models with fields that
reference the data source, so that any
change to the Canonical Model updates
all the fields that reference that data. In
Azure Native relational stores, any new
data written to or deleted from one table
will not propagate to its child tables
unless configured to do so.

2. Version Control. Relational stores in
Azure Native are largely programmed as
procedures such as SQL queries, rather
than as objects such as C3.ai Types.
Procedural programs are more difficult to
version control and edit than C3.ai Types,
because they must be written to delete
and re-create tables if the data schema
needs updating.

Monitoring

Runtime Management

C3.ai + Azure is a fully managed platform, which
eliminates the need for developers to create or
configure dashboards to monitor infrastructure
performance of production applications.
Azure Native has strong tooling for monitoring
performance; several important metrics can be
monitored in dashboards that are available in the
Azure Portal by default and additional dashboards
can be configured to track other metrics of
interest.

46© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Usability is the ease of use and learnability of
software that can be used by specified consumers
to achieve quantified objectives with effectiveness,
efficiency, and satisfaction in a quantified context
of use. To achieve this, teams that implement
predictive applications should have an easy-
to-understand development environment with
the tooling and support they need to work
productively. Platforms that allow developers to
learn and create with ease and have reliable native
and third-party support rate highly in usability.

Factors and Scores

To evaluate Usability in comparison with
Azure Native, the team reviewed C3.ai + Azure
across two factors: Developer Efficiency and
Developing the Mental Model.

Developer Efficiency: 4 – Exceeds Expectations

With the C3 AI Suite, C3.ai + Azure covers all the
requirements to develop an AI solution in the
cloud. The features needed to process data,
manage ML pipelines, and create user interfaces
are available in one place, which is helpful for
developers who may be overwhelmed by the need
to manage several services for the same purpose
in one of the other cloud platforms.

Developing the Mental Model: 4 – Exceeds
Expectations

C3.ai + Azure performs well in this area by
combining the work of several different services
in a typical AI developer environment in one place.
The training offered is comprehensive enough
for a new developer to understand the basics

for creating custom solutions. While there is a
steep learning curve to using C3.ai Types, once
the concepts are understood the elegance of the
architecture means that only a few components
need to be learned for the Application. If there
are any knowledge gaps, developers can
reference the C3.ai community, trainings, and
documentation. The simplicity of the C3 Ai Suite
is an advantage that elevates C3.ai + Azure over
more complex platforms like Azure Native.

Detailed Findings

Developer Tools

The C3.ai + Azure solution leverages the C3.ai
Type System to efficiently create and manage
robust data models and ML pipelines without
the need to manage multiple environments,
services, and programming languages. C3 AI
Suite’s Standardized Design Language (SDL)
also tightly integrates with C3.ai Types to create
consistent, efficient, and scalable user interfaces
that include components such as graphs, maps,
status summaries, and filters out of the box. Azure
Native, in comparison, utilizes different services
for each part of the architecture. Developers
must jump between these services to create and
validate business logic, which hinders developer
productivity.

C3.ai Types also provide the additional benefit
of type annotation, a tool that allows users to
document the business logic of all C3.ai Types,
including data models, pipelines, metrics, etc. This
tool benefits users who are collaborating on the
platform or referencing previous work and has no
equivalent on Azure Native.

Usability

47© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Community

The Azure Native solution consists primarily
of Azure services, Databricks, and Power BI.
The Microsoft Tech Community is a web forum
managed by Microsoft for discussion around
various services such as Office 365, Bing, and
Azure. However, this forum does not have a section
for Power BI and the Azure content is sparse at
around 3,000 entries. This is in comparison to that
on popular forums such as Stack Overflow, which
has 8,000+ results with the Power BI tag and
80,000+ results with the Azure tag. Databricks also
has its own native community with about 6,000
posts, with an additional 2,000 posts in Stack
Overflow. C3.ai has a much smaller community,
since its tool has a much smaller user base
compared to Azure Native. The key disadvantage
to this is that results are not likely to populate
through the search engine and the available posts
likely provide inadequate coverage of potential
questions, especially for smaller topics such
as Machine Learning and Security. As a result,
answers to questions on the C3.ai Community
forum are largely dependent on the effort and
availability of C3.ai staff.

Training

Microsoft offers 50 certifications and exams
across various Azure services. There are more
than 100 mini-courses on their website to learn
how to set up Azure resources and develop on
their platform. In addition, instructor-led training is
available through Microsoft Learning Partners, a
worldwide partner network that delivers flexible,
role-based, customized training and certifications
in Microsoft technologies in blended learning,
in-person, and online formats. Many free and

paid third-party courses for Azure also exist on
the internet. C3.ai has fewer and more focused
training programs for the C3 AI Suite (Low-Code),
IDS (No-Code), and ML Studio (Machine Learning)
offerings. Trainings are administered by C3.ai in-
person or remotely through Coursera with office
hours held by C3.ai staff.

Documentation

Microsoft has very extensive documentation on
most Azure services. Most search results lead to
one or more relevant web pages with tutorials,
example code, and explanations. However,
documentation was not available to explain the
functionality of some of Azure’s newer or recently
updated services. Power BI documentation is
not as comprehensive. In some cases, it was
challenging to understand specific functions
because the documentation did not include
example code. For C3.ai, documentation is not
available through the search engine; partners and
customers must access documentation through
the C3.ai developer portal. The information is
comprehensive on both development topics
and specific C3.ai Types. However, unlike the
documentation on Azure, various filters are used
for navigation rather than a hierarchy of articles
on the left pane. Documentation is not an area of
differentiation as both platforms provide a more
than adequate level of documentation for their size
and complexity.

Support

User Management

Azure Native has standard user management
features to control the roles and access privileges
of users. This can be used to restrict users from

48© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

accessing, changing, and provisioning specific
resources. C3.ai + Azure offers similar functionality
with permissions and access conditions for roles
in both their low-code and no-code environments.
This is not an area of differentiation between C3.ai
+ Azure and Azure Native.

Service Level and Support

Azure Native has 99.95% average uptime across
all its services. The Service Level Agreement
promises different uptimes ranging from 99%

to 99.999% depending on the service, its tier,
and the number of availability zones to which it
is deployed. When services are down, support
engineers promise an initial response time ranging
from 15 minutes to 8 hours, depending on the
Azure support plan. C3.ai + Azure relies on not only
the uptime of the same Azure resources as Azure
Native but also those managed by C3.ai. C3.ai also
promises uptimes ranging from 99% to 99.9% and
has maintained an average of 99.95% uptime over
the last twelve months.

Affordability is the solution’s overall cost including
acquisition and ongoing maintenance.

Factors and Scores

To evaluate Affordability in comparison with
Azure Native, the team reviewed C3.ai + Azure in
comparison to Azure Native across three factors:
Developer Productivity; Ramp-Up Time; and
Design Time.

Developer Productivity: 4 – Exceeds
Expectations

Due to its being a single platform containing
all required components and integrations, it is
easy for a single developer to create a predictive
analytics application on C3.ai + Azure. It only took
each of the team’s developers five business days
to create the Application. It is a much more labor-
intensive task for a single developer to create a
similar predictive analytics application on Azure
Native; in fact, it takes 18 times as long.

Ramp-Up Time: 4 – Exceeds Expectations

When developing on C3.ai + Azure, each
developer must learn the C3.ai Type System, and
it takes 3-6 months to become truly proficient.
Proficiency with Azure Native takes much longer,
as there are a variety of different reference
architectures and use cases to master.

Design Time: 5 – Exceptional Performance

One of the most time-consuming tasks in Azure
Native is design time – working through the high-
level architecture, deciding on which components
and services to utilize, and detailing and revising
the solution as the build takes shape. Frequent
updates to the platform provide more options but
make architectural decisions more challenging.
Although the team came into the comparative
analysis project with a reference architecture
in mind, and it was agreed to very quickly,
approximately 52 hours were spent in design time.
With C3.ai + Azure, the solution was pre-built,
which cut design time to near zero.

Affordability

49© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Detailed Findings

There are additional considerations that impact
the Affordability of C3.ai + Azure in comparison
to Azure Native. The main consideration is Total
Cost of Ownership (“TCO”), which is related to
Maintainability.

Total Cost of Ownership (“TCO”)

The C3 AI Suite’s model-based architecture builds
in a lower TCO when compared to cloud native
solutions. It uses an abstraction layer that facilitates
and shortens typical developer activities, such as:

• Learning the platform language and
architecture

• Building low-code and no-code solutions

• Fixing bugs

• Creating new ML models

• Changing integrations to data sources and
services

• Changing integrations to the underlying CSP
infrastructure, such as adding Databricks to
Azure

When using C3.ai + Azure, fewer developers are
required to build solutions, and each developer
takes significantly less time to perform each
activity; for example, building a predictive analytics
application takes one FTE five days, while building
the same application on Azure Native takes three
FTEs 30 days (see details here). The additional
complexities and customizations involved in the
Azure Native solution impact the above listed
developer activities and will naturally require
higher levels of ongoing operational costs to
maintain and enhance, thus driving up TCO. This
results in a lower overall TCO for C3.ai + Azure in
comparison to Azure Native.

In software engineering and systems engineering,
a functionality refers to a function of a system or
its component, where a function is described as
a specification of application behavior between
outputs and inputs. All functionality that is provided
by the platform accelerates the time to value for
any applications that are built on it.

Factors and Scores

To evaluate Functionality in comparison with
Azure Native, the team reviewed C3.ai + Azure’s
suite across one factor: AI Platform.

Functionality

50© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

AI Platform: 4.5 – Exceeds Expectations

The platform allows developers to create data
pipelines, machine learning models, and gather
analytical insights very simply. C3.ai + Azure seems
to follow industry best practices in all of these
aspects by default and developers can create
a robust data and analytics pipeline with little
overhead. In addition, the platform does a good
job of abstracting away service level details and
allows users to focus on application development.

Detailed Findings

Provision Infrastructure

C3.ai is a fully managed platform that leverages
a model-driven approach to provide a layer of
abstraction on top of the underlying infrastructure
components. Thus, teams using C3.ai + Azure
are not required to have significant knowledge of
the Azure services used to comprise a solution’s
infrastructure.

On Azure Native, the Azure Resource Manager
(ARM) service provides a unified experience
for provisioning infrastructure across nearly all
services on the Azure platform. Customers have
the option of deploying services via the Azure
Portal (no-code) or using ARM templates (code).
While the functionality provided by ARM templates
is substantial, enabling an infrastructure-as-code
approach, the syntax and authoring toolchain
for ARM templates are complex and require
experience to take full advantages of the features
provided. Either option requires users to have an
understanding of the resources available on Azure
and some knowledge of networking to deploy
anything beyond a basic architecture.

Define Data Model

The advantage of data modeling in C3.ai + Azure
is the ease of manipulating C3.ai Type objects
compared to that of relational data stores in Azure
Native. In Azure Native, database schema are
the data models for relational data stores and
each model represented as a table. Therefore,
any deviations of the data model from the source
data schema requires the defining of parent-
child table relationships, the setting of primary
and foreign keys, and complex joins. In contrast,
C3.ai Types, which are represented as objects
that reference the source data directly, provide
more freedom when creating the data model
because entity attributes can be defined through
expressions, which abstract the data manipulation
logic from the user. This abstraction layer allows
the user to interface with the data (specifically
using Canonical and Transformation Types)
without requiring knowledge of the source data.
A developer on Azure Native would typically be
required to understand how to model data for
multiple data sources.

Build Data Integration

Data integration on C3.ai + Azure is simplified
by the C3.ai Type System. Developers on C3.ai
+ Azure define Canonical Models to represent
business objects located in one or multiple data
stores. Downstream interactions with objects
represented as Canonical Models can be
implemented with no dependence on the source.
Additionally, effort to create transformations,
manipulate time-series data, and generate alerts
is significantly reduced using C3.ai Types that
leverage the native, asynchronous processing
engine. As a result, data pipelines built on C3.ai +
Azure are inherently maintainable and scalable.

51© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

On Azure Native, significant effort and experience
is necessary for a developer to establish data
pipelines that support a typical AI solution –
massive data volume, varying data sources, and
diverse data structures. Multiple services exist on
Azure to support this effort with drag-and-drop
interfaces, but no single service abstracts the full
spectrum of data integration tasks which can be
defined using the C3.ai Type System.

Process the Data

Time Series & Metrics

Harnessing the power of IoT for AI solutions
requires development teams to handle large
amounts of unstructured, time-series data. C3.ai
makes it less complex for developers to tackle
these problems using metric Types. Using the
C3.ai Type System, teams can define time-series
transformations of normalized data across space
and time with minimal code. For example, a simple
metric could be used to find the average voltage
of all Smart Devices in a particular building the last
month. AI solutions often require more complex
transformations than averaging a single data
point, so developers on C3.ai must also implement
compound metrics. Similar to simple metrics,
developers can define compound metrics using
C3.ai Types with minimal code – typically one line
of expression-like syntax in a file with other basic
metadata (e.g., metric name). Additionally, the
C3.ai Developer Console provides functionality
for customers to quickly iterate on metric
implementations and visualize the output.

Achieving a similar feedback loop on Azure
Native typically requires the integration of multiple
services or experience with common visualization

libraries that are available in Azure machine
learning environments (e.g., Matplotlib, Seaborn).
The team found that implementing similar metrics
on Azure Native, both simple and compound,
required leveraging common Python libraries used
by data scientists, and took on average 10x longer.

Analytics

AI solutions often provide value to end users via
notifications. On C3.ai + Azure, Analytic Types
make it easy for developers to trigger alerts based
on Data Flow Events and previously defined
Metrics. Developers have the option to override
processing behavior by implementing custom
logic in JavaScript, making it possible to satisfy
diverse business requirements. For example, the
team configured an alert any time a device was
defective with a simple JavaScript implementation
based on the HasEverFailed Metric. Any
Analytics defined on C3.ai + Azure leverage an
asynchronous processing engine, the Analytics
Container Engine, to notify users when thresholds
defined by the business are exceeded as new data
are received.

Implementing Analytics on Azure Native required
the team to inject custom notification logic in the
Transform step of a data pipeline to imitate the
functionality provided by the C3.ai Asynchronous
Processing Engine. The team found this took
twice as long on Azure Native for developers with
previous data wrangling experience and expected
a greater level of maintenance effort to be required
in the future.

52© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Error Handling and Logging

While the solution returns error messages when
provisioning, the wording in the messages is not
as specific as developers would need to easily
identify the issue. Troubleshooting was somewhat
challenging given the fact that the user was
required to interact with the API (making individual
calls) to inspect important data. A suggested
improvement is to create a job/worker/queue
dashboard to surface the errors as they occur.

However, the C3 AI Suite does provide a robust
logging mechanism for deployed applications. It
automatically collects usage data from all points in
the pipeline and makes that data easily accessible
to users. In contrast, a developer would need to
aggregate this information from multiple services
while using Azure Native.

Data Science & Machine Learning

Feature Engineering

Feature engineering is the process of using
domain knowledge of the data to create features
that make machine learning algorithms work.

Features in ML models consist of transformations
and enhancements to the Application’s source
data and metrics. If the feature engineering part
of the pipeline requires heavy data transformation
work, then a programming environment such
as Jupyter Notebooks is recommended. C3.ai +
Azure and Azure Native both have a version of
Notebooks integration, so this is not an area of
differentiation. However, outside of Notebooks,
C3.ai + Azure has the advantage of C3.ai
Transforms, which provide a layer of abstraction
from data transformation logic. This allows
complex data transformations to be defined as

simple expressions, significantly simplifying the
feature engineering process. As a result, feature
engineering on C3.ai + Azure is more capable and
simpler to code than feature engineering on Azure
Native and other competing platforms.

ML Model Tuning

Given a set of machine learning features and a
machine learning algorithm, there are ways to
control the machine learning process to yield
different and perhaps better results. The main
methods of model tuning include re-sampling
the data (over and under-sampling), changing the
algorithm’s hyperparameters, and specifying a
specific solver for the algorithm. C3.ai + Azure and
Azure Native both support these functions and the
team did not experience any area of differentiation
between the two platforms.

ML Model Evaluation

Model evaluation involves the analysis of
performance metrics across different models,
thresholds, and score bins. Typical metrics
include accuracy, precision, recall, F1-score and
predictions versus actuals, such as false positive
rate and true positive rate. These metrics can also
be extrapolated into graphs such as a ROC curve
or precision-recall curve. Both C3.ai + Azure and
Azure Native offer this functionality out of the box.
In Azure Native, performance metrics, graphs, and
score bin data are automatically displayed in a
visual interface. On C3.ai + Azure, these evaluation
parameters must be extracted programmatically
by executing individual commands through
the C3.ai developer console. There are also no
commands to display graphs or change the
threshold post-training. Therefore, Azure Native
has a slight advantage over C3.ai + Azure in this
space.

53© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

User Interface and Programmatic Tooling

Business Intelligence Integrations

C3.ai + Azure can integrate with SDL to solve
most common business intelligence use cases.
SDL provides components such as graphs, maps,
status summaries, and filters out of the box. For
more complex use cases requiring a third-party
business intelligence tool, it is possible to connect
directly to the C3.ai + Azure data source.

As it stands, developers would need to leverage
the API generated by the C3.ai Type System or
connect directly to the underlying data service to
integrate with an external business intelligence
solution. While it is very similar to what an Azure
Native solution would require, this solution causes
developers to lose the service abstraction usually
gained when using the C3 AI Suite. To that end,
C3.ai is currently developing a native Power BI data
connector so that developers can easily integrate

with Microsoft’s BI solution without needing to
know the underlying services. This will give C3.ai
+ Azure a significant advantage over an Azure
Native solution.

API Gateway

An API Gateway provides a single-entry point
to a defined group of services. It often provides
management features around common API
functionality such as security, caching, and load
balancing.

C3.ai + Azure automatically generates a basic API
from the C3.ai Type System, saving development
time that would be spent to develop data access
methods, create API specifications, provision an
API environment, configure CORS, and write unit
tests.

Interoperability is the solution’s ability to interact
effectively with other systems or components.

Factors and Scores

To evaluate Interoperability in comparison with
Azure Native, the team reviewed C3.ai + Azure
across three factors: Integration, Delivery, and
Portability.

Integration: 4 – Exceeds Expectations

Based on the team’s experience with C3.ai +
Azure, it appears the Application can bring in data

from any source, and the developer can easily
transform data into C3.ai Types using an object-
oriented model.

Delivery: 4 – Exceeds Expectations

Currently it is not possible to integrate
visualizations built on the C3.ai platform with
other applications. The ability to leverage a BI
solution (Power BI, Tableau, Qlik, etc.) using data
connections is an interoperable strength of Azure
Native. While it is possible to leverage the API
generated by the C3.ai platform to integrate with

Interoperability

54© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

external BI solutions, there are currently no native
data connectors to facilitate a simple connection.
However, C3.ai is actively developing these data
connectors including PowerBI, which will allow it
to match the visualization interoperability of Azure
Native.

Detailed Findings

Data Integration

Canonical Model

C3.ai Canonical Models are a subset of the C3.ai
Type System that represent key business objects
from existing IoT and enterprise systems. Defining
Canonical Models on C3.ai + Azure significantly
reduces data integration efforts because these
Types can take advantage of the C3.ai Type
System native capability to read/write Types
across a wide variety of data stores. In contrast,
developers working on Azure Native have to
define data models specific to chosen data stores,
which is a rigid approach that leads to increased
maintenance as solutions evolve. A more robust
architecture would likely involve an Object
Relational Mapping (ORM) library, but no existing
ORMs support spanning multiple data stores. The
tradeoff of using the C3.ai Type System to define
data models is that C3.ai Types are proprietary
to the C3.ai platform. These models cannot be
exported and used outside of the platform nor can
outside models be imported directly into the C3.ai
platform before being redefined using the Type
System.

API (Application Programming Interface)

Exposing data is an essential part of delivering
business value from AI solutions, and C3.ai
provides an out-of-the-box API for end users to
consume all data on the platform to analyze and

derive insights. On Azure Native, development
teams typically spend 2-3 weeks developing
custom APIs that require maintenance
and performance monitoring. To maximize
interoperability, API solutions should implement
the Open Data Protocol (OData) in order to simplify
consumption and take advantage of inherent
integrations with common reporting solutions
(e.g. Excel, Power BI, Tableau). An additional 2-3
weeks of effort is needed to properly build APIs
that comply with OData, but an early investment
of resources will allow teams to focus more on
business needs and less on development.

C3.ai is also actively developing a native Power
BI data connector which would allow developers
to connect to a C3.ai + Azure solution without
needing to consider the underlying data store or
even use the generated API.

Data Storage

The C3.ai Type System makes it easy to connect to
various data sources with simple Type definitions.
Any Types defined in C3.ai as persistable will be
stored in Postgres by default. Adding more Data
Source Types is straightforward – developers
can use any of the numerous templates for
common open source and cloud data stores or
setup custom configurations. While it’s possible
to integrate with open source or other CSP data
stores using Azure Native, developers usually
design architectures comprised of Azure services
to maximize efficiency and leverage native
integrations. Integrating with external data stores,
such as AWS DynamoDB, would lead to additional
configuration efforts and potentially require
custom development. See example storage
options below:

55© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Table 9. Data Storage Types for Predictive Analytics Application on C3.ai + Azure and Azure Native

C3.ai + Azure Azure NativeStorage Type

Relational

Key-Value

Multi-Dimensional

Postgres (Default)

AWS RDS

GCP Cloud SQL

All Azure Offerings

and more…

Cassandra

AWS DocumentDB

GCP Cloud Firestore

All Azure Offerings

and more…

AWS Redshift

GCP BigQuery

All Azure Offerings

and more…

Azure SQL

Azure Postgres

Azure MySQL

Azure Blob Storage

Azure Cosmos DB

Azure Synapse SQL DW

HBase in HDInsight

56© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Security is the solution’s ability to prevent
unauthorized disclosure, loss, modification, or use
of its data or functionality. This is a critical concern
for mission critical predictive applications that
are on based on extremely sensitive business
data, as an attacker could cause critical harm to
business operations. Security can be divided
across the following sub-criteria: Secure Design,
Authentication, Access Control, Encryption, and
Auditability.

Factors and Scores

To evaluate Security in comparison with Azure
Native, the team reviewed C3.ai + Azure across
multiple factors typically included in Virtual Private
Clouds.

Security: 3 – Meets Expectations

C3.ai + Azure offers security like that of other
Cloud Service Providers. Role-Based Access
Controls are included as well as an OAuth
implementation out-of-the-box using Okta. Roles
and Groups are defined as JSON objects in the
project solution so they can be added to a code
repository for better version control.

Security

57© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

Proven Results in 8-12 Weeks Visit c3.ai/get-started

Conclusion

A team of three experienced software engineers built a simple predictive analytics application
for AI-enabled devices on C3.ai’s no-code platform – the C3 AI Suite – in combination with Azure
(“C3.ai + Azure”), and compared it to building a similar application using only Azure native services
(“Azure Native”).

The team found that building the application on C3.ai + Azure accelerated development by a factor
of 30 times over Azure Native, while reducing effort and risk through C3.ai’s model-driven architecture.
The team also concluded that C3.ai + Azure required significantly less development code than Azure
Native and is more pleasant to work with overall.

Metrics

90 days

3,047

3 days Reduced by 30x

Reduced by 217x14

Azure Native
Low-Code

C3.ai No-Code (IDS)
+ Azure

Effort Comparison Using
C3.ai + Azure

Total Effort (FTE Days)

Lines of Custom Code

58© 2020 C3.ai | All Rights Reserved | 20_0717

Third-Party Report by Azure Premier System Integrator

1300 Seaport Boulevard, Suite 500, Redwood City, CA 94063

	Executive Summary
	Findings
	Background
	The Azure Native Solution
	Comparison Tools in Detail

	Project Narrative
	C3.ai + Azure Solution
	The Azure Native Solution

	Comparative Observations
	Project Metric Comparison
	Developer Experience Inputs

	‘Ilities in Detail
	Maintainability
	Usability
	Affordability
	Functionality
	Interoperability
	Security

	Conclusion

